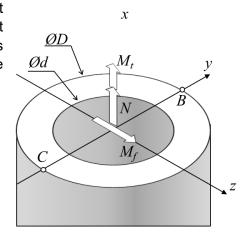
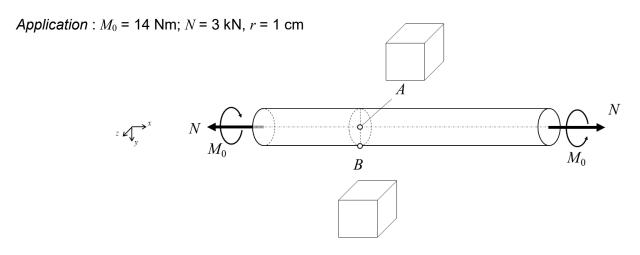

Problème 1 : Un arbre de machine en acier de diamètre D supporte simultanément un moment de flexion M_f et un moment de torsion M_t . En utilisant le critère de von Mises, évaluer la contrainte maximale de comparaison σ_g et le coefficient de sécurité n associé.


Application : Ac C10, σ_e = 340 MPa, D = 8 cm, M_f = 4 kNm, M_t = 6 kNm.

Problème 2 : La section droite d'un arbre de machine est soumise simultanément à l'effort normal N, au moment fléchissant M_f et au moment de torsion M_t . Utiliser les critères de Mohr et du plus grand travail de distorsion pour calculer le coefficient de sécurité n aux points B et C.


Application:

D = 160 mm; d = 100 mm; N = 500 kN; M_f =18 kNm; M_t =25 kNm σ_{et} = 220 MPa; σ_{ec} = 300 MPa

Problème 3 : On considère une poutre soumise à de la torsion et de la traction.

- a. Représenter la répartition des contraintes de cisaillement et des contraintes normales dans la section et calculer les valeurs maximales.
- b. Indiquer l'orientation des contraintes normales et de cisaillement aux points A et B sur le schéma.
- c. Dessiner les cercles de Mohr pour les points A et B situé sur la fibre moyenne et la fibre extrême.
- d. Calculer les contraintes principales.

